Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 101
1.
Heliyon ; 10(9): e29923, 2024 May 15.
Article En | MEDLINE | ID: mdl-38720730

Cell membrane surface tension has emerged as a pivotal biophysical factor governing cell behavior and fate. This review systematically delineates recent advances in techniques for cell membrane surface tension quantification, mechanosensing mechanisms, and regulatory roles of cell membrane surface tension in modulating major cellular processes. Micropipette aspiration, tether pulling, and newly developed fluorescent probes enable the measurement of cell membrane surface tension with spatiotemporal precision. Cells perceive cell membrane surface tension via conduits including mechanosensitive ion channels, curvature-sensing proteins (e.g. BAR domain proteins), and cortex-membrane attachment proteins (e.g. ERM proteins). Through membrane receptors like integrins, cells convert mechanical cues into biochemical signals. This conversion triggers cytoskeletal remodeling and extracellular matrix interactions in response to environmental changes. Elevated cell membrane surface tension suppresses cell spreading, migration, and endocytosis while facilitating exocytosis. Moreover, reduced cell membrane surface tension promotes embryonic stem cell differentiation and cancer cell invasion, underscoring cell membrane surface tension as a regulator of cell plasticity. Outstanding questions remain regarding cell membrane surface tension regulatory mechanisms and roles in tissue development/disease in vivo. Emerging tools to manipulate cell membrane surface tension with high spatiotemporal control in combination with omics approaches will facilitate the elucidation of cell membrane surface tension-mediated effects on signaling networks across various cell types/states. This will accelerate the development of cell membrane surface tension-based biomarkers and therapeutics for regenerative medicine and cancer. Overall, this review provides critical insights into cell membrane surface tension as a potent orchestrator of cell function, with broader impacts across mechanobiology.

2.
Environ Int ; 186: 108645, 2024 Apr.
Article En | MEDLINE | ID: mdl-38615541

Benzene is a broadly used industrial chemicals which causes various hematologic abnormalities in human. Altered DNA methylation has been proposed as epigenetic biomarkers in health risk evaluation of benzene exposure, yet the role of methylation at specific CpG sites in predicting hematological effects remains unclear. In this study, we recruited 120 low-level benzene-exposed and 101 control male workers from a petrochemical factory in Maoming City, Guangdong Province, China. Urinary S-phenylmercapturic acid (SPMA) in benzene-exposed workers was 3.40-fold higher than that in control workers (P < 0.001). Benzene-induced hematotoxicity was characterized by reduced white blood cells counts and nuclear division index (NDI), along with an increased DNA damage and urinary 8-hydroxy-2'-deoxyguanosine (all P < 0.05). Methylation levels of TRIM36, MGMT and RASSF1a genes in peripheral blood lymphocytes (PBLCs) were quantified by pyrosequencing. CpG site 6 of TRIM36, CpG site 2, 4, 6 of RASSF1a and CpG site 1, 3 of MGMT methylation were recognized as hot CpG sites due to a strong correlation with both internal exposure and hematological effects. Notably, integrating hot CpG sites methylation of multiple genes reveal a higher efficiency in prediction of integrative damage compared to individual genes at hot CpG sites. The negative dose-response relationship between the combined methylation of hot CpG sites in three genes and integrative damage enabled the classification of benzene-exposed individuals into high-risk or low-risk groups using the median cut-off value of the integrative index. Subsequently, a prediction model for integrative damage in benzene-exposed populations was built based on the methylation status of the identified hot CpG sites in the three genes. Taken together, these findings provide a novel insight into application prospect of specific CpG site methylation as epi-biomarkers for health risk assessment of environmental pollutants.


Acetylcysteine/analogs & derivatives , Benzene , CpG Islands , DNA Methylation , Occupational Exposure , Humans , DNA Methylation/drug effects , Male , Occupational Exposure/adverse effects , Benzene/toxicity , Adult , China , DNA Damage , Middle Aged , Biomarkers/urine , Acetylcysteine/urine , Tumor Suppressor Proteins/genetics , DNA Repair Enzymes/genetics
3.
Animals (Basel) ; 14(7)2024 Mar 30.
Article En | MEDLINE | ID: mdl-38612302

Cervidae represents a family that is not only rich in species diversity but also exhibits a wide range of karyotypes. The controversies regarding the phylogeny and classification of Cervidae still persist. The flourishing development of the genomic era has made it possible to address these issues at the genomic level. Here, the genomes of nine species were used to explore the phylogeny and chromosomal evolutionary events of Cervidae. By conducting whole-genome comparisons, we identified single-copy orthologous genes across the nine species and constructed a phylogenetic tree based on the single-copy orthologous genes sequences, providing new insights into the phylogeny of Cervidae, particularly the phylogenetic relationship among sika deer, red deer, wapiti and Tarim red deer. Gene family analysis revealed contractions in the olfactory receptor gene family and expansions in the histone gene family across eight Cervidae species. Furthermore, synteny analysis was used to explore the chromosomal evolutionary events of Cervidae species, revealing six chromosomal fissions during the evolutionary process from Bovidae to Cervidae. Notably, specific chromosomal fusion events were found in four species of Cervus, and a unique chromosomal fusion event was identified in Muntiacus reevesi. Our study further completed the phylogenetic relationship within the Cervidae and demonstrated the feasibility of inferring species phylogeny at the whole-genome level. Additionally, our findings on gene family evolution and the chromosomal evolutionary events in eight Cervidae species lay a foundation for comprehensive research of the evolution of Cervidae.

4.
Article En | MEDLINE | ID: mdl-38613763

Individual typical endocrine-disrupting chemicals (EDCs), including organophosphate triesters (OPEs), parabens, triclosan (TCS), bisphenols, benzophenones (BPs), phthalates (PAEs), and synthetic phenolic antioxidants (SPAs), are associated with renal dysfunction. However, the combined effects and underlying mechanisms of mixed EDC exposure on renal function remain unclear. Two hundred ninety-nine adult participants were enrolled in the cross-sectional survey conducted in Guangzhou, China. Urinary levels of 7 OPEs, 6 parabens, TCS, 14 bisphenols, 8 BPs, 15 PAEs, 4 SPAs, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were determined, and estimated glomerular filtration rate (eGFR) was served as the outcome index. We found elevated levels of diphenyl phosphate (DPP), bisphenol A (BPA), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and mono-butyl phthalate (MBP) showed dose-responsive associations with eGFR decline, However, nonlinear associations were observed for bis(2-butoxyethyl) hydrogen phosphate (BBOEP), TCS, 4-hydroxybenzophenone (HBP), mono-n-pentyl phthalate (MnPP), and mono-benzyl phthalate (MBzP). The quantile-based g-computation model demonstrated that a quartile increase in the EDC mixture corresponded to a 0.383-SD decrease (95% CI - 0.658 ~ - 0.108, P = 0.007) in eGFR. Notably, BPA was identified as the primary contributor to this effect. Moreover, 8-OHdG mediated the eGFR decline associated with EDC mixtures with a mediation proportion of 25.49%. A sex-modified effect was also observed (P = 0.004), indicating that exposure to the mixture of EDC was linked to more pronounced renal dysfunction in females. Our novel findings suggest that exposure to a typical mixture of EDCs is associated with renal dysfunction in the general adult population of Southern China. Furthermore, 8-OHdG may play a role in the pathogenesis of EDC mixture-related renal dysfunction.

5.
Environ Res ; 251(Pt 2): 118708, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38493858

The mode of action (MOA) framework is proposed to inform a biological link between chemical exposures and adverse health effects. Despite a significant increase in knowledge and awareness, the application of MOA in human health risk assessment (RA) remains limited. This study aims to discuss the adoption of MOA for health RA within a regulatory context, taking our previously proposed but not yet validated MOA for lead neurotoxicity as an example. We first conducted a quantitative weight of evidence (qWOE) assessment, which revealed that the MOA has a moderate confidence. Then, targeted bioassays were performed within an in vitro blood-brain barrier (BBB) model to quantitatively validate the scientific validity of key events (KEs) in terms of essentiality and concordance of empirical support (dose/temporal concordance), which increases confidence in utilizing the MOA for RA. Building upon the quantitative validation data, we further conducted benchmark dose (BMD) analysis to map dose-response relationships for the critical toxicity pathways, and the lower limit of BMD at a 5% response (BMDL5) was identified as the point of departure (POD) value for adverse health effects. Notably, perturbation of the Aryl Hydrocarbon Receptor (AHR) signaling pathway exhibited the lowest POD value, measured at 0.0062 µM. Considering bioavailability, we further calculated a provisional health-based guidance value (HBGV) for children's lead intake, determining it to be 2.56 µg/day. Finally, the health risk associated with the HBGV was assessed using the hazard quotient (HQ) approach, which indicated that the HBGV established in this study is a relative safe reference value for lead intake. In summary, our study described the procedure for utilizing MOA in health RA and set an example for MOA-based human health risk regulation.

6.
Food Chem Toxicol ; 186: 114519, 2024 Apr.
Article En | MEDLINE | ID: mdl-38369053

N-Nitrosodiethylamine (NDEA), a carcinogen in some foods and medications, is linked to liver damage similar to non-alcoholic fatty liver disease (NAFLD). This study explores how NDEA disrupts liver lipid metabolism. Sprague-Dawley rats were given two doses of NDEA (100 mg/kg) orally, 24 h apart. Liver response was assessed through tissue staining, blood tests, and biochemical markers, including fatty acids, lipid peroxidation, and serum very-low density lipoprotein (VLDL) levels. Additionally, lipidomic analysis of liver tissues and serum was performed. The results indicated significant hepatic steatosis (fat accumulation in the liver) following NDEA exposure. Blood analysis showed signs of inflammation and liver damage. Biochemical tests revealed decreased liver protein synthesis and specific enzyme alterations, suggesting liver cell injury but maintaining mitochondrial function. Increased fatty acid levels without a rise in lipid peroxidation were observed, indicating fat accumulation. Lipidomic analysis showed increased polyunsaturated triglycerides in the liver and decreased serum VLDL, implicating impaired VLDL transport in liver dysfunction. In conclusion, NDEA exposure disrupts liver lipid metabolism, primarily through the accumulation of polyunsaturated triglycerides and impaired fat transport. These findings provide insight into the mechanisms of NDEA-induced liver injury and its progression to hepatic steatosis.


Diethylnitrosamine , Non-alcoholic Fatty Liver Disease , Rats , Animals , Triglycerides/metabolism , Diethylnitrosamine/toxicity , Lipoproteins, VLDL/metabolism , Rats, Sprague-Dawley , Liver/metabolism , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/metabolism , Lipid Metabolism , Lipoproteins, LDL/metabolism , Diet, High-Fat
7.
Environ Pollut ; 346: 123564, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38367693

Histone modifications maintain genomic stability and orchestrate gene expression at the chromatin level. Benzo [a]pyrene (BaP) is the ubiquitous carcinogen widely spread in the environment, but the role and regulatory mechanism of histone modification in its toxic effects remain largely undefined. In this study, we found a dose-dependent reduction of histone H3 methylations at lysine4, lysine9, lysine27, lysine36 in HBE cells treated with BaP. We observed that inhibiting H3K27 and H3K36 methylation impaired cell proliferation, whereas the loss of H3K4, H3K9, H3K27, and H3K36 methylation led to increased genomic instability and delayed DNA repair. H3K36 mutation at both H3.1 and H3.3 exhibited the most significant impacts. In addition, we found that the expression of SET domain containing 2 (SETD2), the unique methyltransferase catalyzed H3K36me3, was downregulated by BaP dose-dependently in vitro and in vivo. Knockdown of SETD2 aggravated DNA damage of BaP exposure, which was consistent with the effects of H3K36 mutation. With the aid of chromatin immunoprecipitation (ChIP) -seq and RNA-seq, we found that H3K36me3 was responsible for transcriptional regulation of genes involved in pathways related to cell survival, lung cancer, metabolism and inflammation. The enhanced enrichment of H3K36me3 in genes (CYP1A1, ALDH1A3, ACOXL, WNT5A, WNT7A, RUNX2, IL1R2) was positively correlated with their expression levels, while the reduction of H3K36me3 distribution in genes (PPARGC1A, PDE4D, GAS1, RNF19A, KSR1) were in accordance with the downregulation of gene expression. Taken together, our findings emphasize the critical roles and mechanisms of histone lysine methylation in mediating cellular homeostasis during BaP exposure.


Benzo(a)pyrene , Histones , Humans , Histones/metabolism , Benzo(a)pyrene/toxicity , Methylation , Genomic Instability , Epithelial Cells/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
8.
Environ Pollut ; 346: 123628, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38395129

Epidemiological evidence concerning effects of simultaneous exposure to noise and benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS) on renal function remains uncertain. In 2020, a cross-sectional study was conducted among 1160 petrochemical workers in southern China to investigate effects of their co-exposure on estimated glomerular filtration rate (eGFR) and mild renal impairment (MRI). Noise levels were assessed using cumulative noise exposure (CNE). Urinary biomarkers for BTEXS were quantified. We found the majority of workers had exposure levels to noise and BTEXS below China's occupational exposure limits. CNE, trans, trans-muconic acid (tt-MA), and the sum of mandelic acid and phenylglyoxylic acid (PGMA) were linearly associated with decreased eGFR and increased MRI risk. We observed U-shaped associations for both N-acetyl-S-phenyl-L-cysteine (SPMA) and o-methylhippuric acid (2-MHA) with MRI. In further assessing the joint effect of BTEXS (ß, -0.164 [95% CI, -0.296 to -0.033]) per quartile increase in all BTEXS metabolites on eGFR using quantile g-computation models, we found SPMA, tt-MA, 2-MHA, and PGMA played pivotal roles. Additionally, the risk of MRI associated with tt-MA was more pronounced in workers with lower CNE levels (P = 0.004). Multiplicative interaction analysis revealed antagonisms of CNE and PGMA on MRI risk (P = 0.034). Thus, our findings reveal negative dose-effect associations between noise and BTEXS mixture exposure and renal function in petrochemical workers. With the exception of toluene, benzene, xylene, ethylbenzene, and styrene are all concerning pollutants for renal dysfunction. Effects of benzene, ethylbenzene, and styrene exposure on renal dysfunction were more pronounced in workers with lower CNE.


Glyoxylates , Kidney Diseases , Mandelic Acids , Occupational Exposure , Humans , Benzene/analysis , Xylenes/analysis , Toluene/analysis , Styrene/analysis , Cross-Sectional Studies , Benzene Derivatives/analysis , Occupational Exposure/analysis
9.
Oncol Lett ; 26(4): 461, 2023 Oct.
Article En | MEDLINE | ID: mdl-37745981

Primary synovial sarcoma of the pleura (PSSP) is a rare disease. The present study reported the case of a patient (male; age, 18 years) with two tumors (7.8×2.8 cm and 6.5×5.8 cm) treated with surgery and chemotherapy. To the best of our knowledge, this is the first reported case of two tumors diagnosed as PSSP, which was confirmed by immunohistochemical staining. After six months of follow-up, the symptoms of dry cough and wheezing disappeared and all of the laboratory results were within normal limits. PSSP requires clinical suspicion combined with strategic diagnostic evaluation to confirm the diagnosis and a comprehensive treatment program based on surgery and assisted by chemotherapy.

10.
Environ Int ; 178: 108113, 2023 08.
Article En | MEDLINE | ID: mdl-37506515

Recent population and animal studies have revealed a correlation between fat content and the severity of benzene-induced hematologic toxicity. However, the precise impact of lipid deposition on benzene-induced hematotoxicity and the underlying mechanisms remain unclear. In this study, we established a mouse model with moderate lipid accumulation by subjecting the mice to an 8-week high-fat diet (45% kcal from fat, HFD), followed by 28-day inhalation of benzene at doses of 0, 1, 10, and 100 ppm. The results showed that benzene exposure caused a dose-dependent reduction of peripheral white blood cell (WBC) counts in both diet groups. Notably, this reduction was less pronounced in the HFD-fed mice, suggesting that moderate lipid accumulation mitigates benzene-related hematotoxicity. To investigate the molecular basis for this effect, we performed bioinformatics analysis of high-throughput transcriptome sequencing data, which revealed that moderate lipid deposition alters mouse metabolism and stress tolerance towards xenobiotics. Consistently, the expression of key metabolic enzymes, such as Cyp2e1 and Gsta1, were upregulated in the HFD-fed mice upon benzene exposure. Furthermore, we utilized a real-time exhaled breath detection technique to monitor exhaled benzene metabolites, and the results indicated that moderate lipid deposition enhanced metabolic activation and increased the elimination of benzene metabolites. Collectively, these findings demonstrate that moderate lipid deposition confers reduced susceptibility to benzene-induced hematotoxicity in mice, at least in part, by accelerating benzene metabolism and clearance.


Benzene , Leukocytes , Mice , Animals , Benzene/toxicity , Acceleration , Lipids , Lipid Metabolism
11.
Environ Pollut ; 330: 121808, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-37182580

Micro/nano-plastics (MPs/NPs) are a newly discovered environmental pollutant that can be ingested by humans through food and drinking water. In this study we evaluated the impact of MPs/NPs on the intestinal barrier and its mechanism. Doses of MPs/NPs were used to treat Caco-2/HT29-MTX in-vitro model and in-vivo model. In in-vitro model, 20 nm polystyrene nanoplastics (PS-NPs) had higher cytotoxicity than larger particles (200 nm and 2000 nm), and led to the increase of the permeability along with the decreased expression of tight junction proteins. Intriguingly, 20 nm PS-NPs elevated the expression of MUC2 simultaneously. Further studies revealed that PS-NPs increased the expression of HO1 through ROS generation, and then activated p38 to elevate IL-10 secretion in Caco-2 cell. The IL-10 secreted by Caco-2 cell promoted the expression of MUC2 in HT29-MTX cell through STAT1/3. Elevated MUC2 expression alleviates the cytotoxicity of PS-NPs. Besides, increased intestinal permeability and up-regulation of MUC2 through Ho1/p38/IL-10 pathway was also observed in 20 nm PS-NPs treated mouse model. In conclusion, PS-NPs can induce the intestinal toxicity and result in the increased adaptive expression of MUC2 to resist this adverse effect. People with inadequate mucin expression need to pay more attention to the toxicity of PS-NPs. This study provided a valuable insight for clarifying the mechanism and potential risk of intestinal toxicity induced by nanoplastics.


Nanoparticles , Water Pollutants, Chemical , Animals , Mice , Humans , Caco-2 Cells , Microplastics/toxicity , Polystyrenes/toxicity , Interleukin-10 , Intestines , Nanoparticles/toxicity , Nanoparticles/metabolism , Water Pollutants, Chemical/toxicity
12.
Genes (Basel) ; 14(5)2023 05 02.
Article En | MEDLINE | ID: mdl-37239395

Breeding ornamental white sika deer is a new notion that can be used to broaden the sika deer industry However, it is very rare for other coat phenotypes to occur, especially white (apart from albinism), due to the genetic stability and homogeneity of its coat color phenotype, making it difficult to breed white sika deer between species. We found a white sika deer and sequenced its whole genome. Then, the clean data obtained were analyzed on the basis of gene frequency, and a cluster of coat color candidate genes containing 92 coat color genes, one SV (structure variation), and five nonsynonymous SNPs (single nucleotide polymorphisms) was located. We also discovered a lack of melanocytes in the skin tissue of the white sika deer through histological examination, initially proving that the white phenotype of sika deer is caused by a 10.099 kb fragment deletion of the SCF gene(stem cell factor). By designing SCF-specific primers to detect genotypes of family members of the white sika deer, and then combining them with their phenotypes, we found that the genotype of the white sika deer is SCF789/SCF789, whereas that of individuals with white patches on their faces is SCF789/SCF1-9. All these results showed that the SCF gene plays an important role in the development of melanocytes in sika deer and is responsible for the appearance of the white coat color. This study reveals the genetic mechanism of the white coat color in sika deer and supplies data as a reference for breeding white ornamental sika deer.


Deer , Stem Cell Factor , Animals , Stem Cell Factor/genetics , Deer/genetics , Phenotype , Genotype , Gene Frequency
13.
Int J Mol Sci ; 24(5)2023 Feb 23.
Article En | MEDLINE | ID: mdl-36901841

Excessive use of antibiotics in aquaculture causes residues in aquatic animal products and harms human health. However, knowledge of florfenicol (FF) toxicology on gut health and microbiota and their resulting relationships in economic freshwater crustaceans is scarce. Here, we first investigated the influence of FF on the intestinal health of Chinese mitten crabs, and then explored the role of bacterial community in FF-induced intestinal antioxidation system and intestinal homeostasis dysbiosis. A total of 120 male crabs (48.5 ± 4.5 g) were experimentally treated in four different concentrations of FF (0, 0.5, 5 and 50 µg/L) for 14 days. Responses of antioxidant defenses and changes of gut microbiota were assessed in the intestine. Results revealed that FF exposure induced significant histological morphology variation. FF exposure also enhanced immune and apoptosis characteristics in the intestine after 7 days. Moreover, antioxidant enzyme catalase activities showed a similar pattern. The intestinal microbiota community was analyzed based on full-length 16S rRNA sequencing. Only the high concentration group showed a marked decrease in microbial diversity and change in its composition after 14 days of exposure. Relative abundance of beneficial genera increased on day 14. These findings illustrate that exposure to FF could cause intestinal dysfunction and gut microbiota dysbiosis in Chinese mitten crabs, which provides new insights into the relationship between gut health and gut microbiota in invertebrates following exposure to persistent antibiotics pollutants.


Brachyura , Gastrointestinal Microbiome , Animals , Humans , Male , Antioxidants/pharmacology , RNA, Ribosomal, 16S/genetics , Dysbiosis , Anti-Bacterial Agents/pharmacology , Brachyura/genetics
14.
Arch Toxicol ; 97(4): 1133-1146, 2023 04.
Article En | MEDLINE | ID: mdl-36806895

Intestinal organoid may serve as an alternative model for toxicity testing. However, the linkage between specific morphological alterations in organoids and chemical-induced toxicity has yet to be defined. Here, we generated C57BL/6 mouse intestinal organoids and conducted a morphology-based analysis on chemical-induced toxicity. Alterations in morphology were characterized by large spheroids, hyperplastic organoids, small spheroids, and protrusion-loss organoids, which responded in a concentration-dependent manner to the treatment of four metal(loid)s including cadmium (Cd), lead (Pb), hexavalent chromium (Cr-VI), and inorganic trivalent arsenic (iAs-III). Notably, alterations in organoid morphology characterized by abnormal morphology rate were correlated with specific intestinal toxic effects, including reduction in cell viability and differentiation, induction of apoptosis, dysfunction of mucus production, and damage to epithelial barrier upon repeated administration. The benchmark dose (BMDL10) values of morphological alterations (0.007-0.195 µM) were lower than those of conventional bioassays (0.010-0.907 µM). We also established that the morphologic features of organoids upon Cd, Pb, Cr-VI, or iAs-III treatment were metal specific, and mediated by Wnt, bone morphogenetic protein, apoptosis induction, and Notch signaling pathways, respectively. Collectively, these findings provide novel insights into the relevance of morphological alterations in organoids to specific toxic endpoints and identify specific morphological alterations as potential indicators of enterotoxicity.


Cadmium , Lead , Mice , Animals , Mice, Inbred C57BL , Intestines , Organoids , Intestinal Mucosa
15.
Environ Sci Pollut Res Int ; 30(11): 31620-31630, 2023 Mar.
Article En | MEDLINE | ID: mdl-36449247

Many harmful factors existing simultaneously with noise are reported to induce hearing impairment, such as organic solvents. However, the existing hearing safety limits and current risk assessment for hearing loss rely on single noise exposure. It is urgent to clarify the combined effect of noise and other harmful factors on hearing loss. Petrochemical workers are always exposed to noise and organic solvents, mainly benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS), while the combined effect of their coexposure on hearing remains unclear. Herein we conducted a cross-sectional survey, measuring pure-tone audiometry of 1496 petrochemical workers in southern China. Participants exposed to BTEXS were 569, 524, 156, 452, and 177 respectively. Individual cumulative noise exposure (CNE) levels and BTEXS exposure were assessed. The average CNE was 93.27 ± 4.92 dB(A)·years, and the concentrations of BTEXS were far below the occupational exposure limits of China. Logistic regression analyses showed that CNE was consistently positively associated with hearing loss (HL) and high-frequency hearing loss (HFHL) but not related to speech-frequency hearing loss (SFHL). Compared with participants in the lowest quartile of CNE, those in the highest quartile showed an OR of 5.229 (95% CI: 3.179, 8.598) for HFHL. Two-pollutant model analysis indicated that TEXS exposure was positively associated with HL (OR 1.679, 95%CI 1.086, 2.597), SFHL (OR 2.440, 95%CI 1.255, 4.744), and HFHL (OR 1.475, 95%CI 1.077, 2.020). However, no interactions were observed between CNE and TEXS coexposure on hearing loss. In our study, covariates including smoking and drinking status, body mass index (BMI), ear protection and personal protective equipment, and use of earphone/headphone were adjusted. In conclusion, coexposure to noise and low-level TEXS could induce more severe damage on hearing function than exposure to each alone, especially SFHL. Therefore, petrochemical workers simultaneously exposed to noise and TEXS, even at low-level, should be included in hearing protection programs.


Hearing Loss, Noise-Induced , Noise, Occupational , Occupational Diseases , Occupational Exposure , Humans , Xylenes , Toluene , Hearing Loss, Noise-Induced/epidemiology , Styrene , Cross-Sectional Studies , Noise, Occupational/adverse effects , Solvents
16.
Arch Toxicol ; 97(2): 441-456, 2023 Feb.
Article En | MEDLINE | ID: mdl-36336710

Cisplatin is recommended as a first-line chemotherapeutic agent against advanced non-small cell lung cancer (NSCLC), but acquired resistance substantially limits its clinical efficacy. Recently, DNA methylation has been identified as an essential contributor to chemoresistance. However, the precise DNA methylation regulatory mechanism of cisplatin resistance remains unclear. Here, we found that nicotinamide nucleotide transhydrogenase (NNT) was silenced by DNA hypermethylation in cisplatin resistance A549 (A549/DDP) cells. Also, the DNA hypermethylation of NNT was positively correlated to poor prognosis in NSCLC patients. Overexpression of NNT in A549/DDP cells could reduce their cisplatin resistance, and also suppressed their tumor malignancy such as cell proliferation and clone formation. However, NNT enhanced sensitivity of A549/DDP cells to cisplatin had little to do with its function in mediating NADPH and ROS level, but was mainly because NNT could inhibit protective autophagy in A549/DDP cells. Further investigation revealed that NNT could decrease NAD+ level, thereby inactivate SIRT1 and block the autophagy pathway, while re-activation of SIRT1 through NAD+ precursor supplementation could antagonize this effect. In addition, targeted demethylation of NNT CpG island via CRISPR/dCas9-Tet1 system significantly reduced its DNA methylation level and inhibited the autophagy and cisplatin resistance in A549/DDP cells. Thus, our study found a novel chemoresistance target gene NNT, which played important roles in cisplatin resistance of lung cancer cells. Our findings also suggested that CRISPR-based DNA methylation editing of NNT could be a potential therapeutics method in cisplatin resistance of lung cancer.


Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , NADP Transhydrogenases , Humans , A549 Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Autophagy , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation , Cisplatin/pharmacology , DNA , DNA Methylation , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , NAD/metabolism , NADP Transhydrogenases/genetics , NADP Transhydrogenases/metabolism , Sirtuin 1/metabolism
17.
Genomics Proteomics Bioinformatics ; 21(1): 203-215, 2023 02.
Article En | MEDLINE | ID: mdl-35718271

Sika deer are known to prefer oak leaves, which are rich in tannins and toxic to most mammals; however, the genetic mechanisms underlying their unique ability to adapt to living in the jungle are still unclear. In identifying the mechanism responsible for the tolerance of a highly toxic diet, we have made a major advancement by explaining the genome of sika deer. We generated the first high-quality, chromosome-level genome assembly of sika deer and measured the correlation between tannin intake and RNA expression in 15 tissues through 180 experiments. Comparative genome analyses showed that the UGT and CYP gene families are functionally involved in the adaptation of sika deer to high-tannin food, especially the expansion of the UGT family 2 subfamily B of UGT genes. The first chromosome-level assembly and genetic characterization of the tolerance to a highly toxic diet suggest that the sika deer genome may serve as an essential resource for understanding evolutionary events and tannin adaptation. Our study provides a paradigm of comparative expressive genomics that can be applied to the study of unique biological features in non-model animals.


Deer , Animals , Deer/genetics , Deer/metabolism , Tannins/metabolism , Genome , Genomics , Diet
18.
Animals (Basel) ; 12(24)2022 Dec 14.
Article En | MEDLINE | ID: mdl-36552448

Velvet deer are not only a representative special economic animal but also an important part of livestock. With the increasing awareness of international competition for germplasm resources in China, more and more attention has been paid to the protection and utilization of germplasm resources. However, there is poor understanding about velvet deer resources. Therefore, we are providing a comprehensive introduction of Chinese velvet deer germplasm resources from the aspects of ecological distribution, domestication and breeding.

19.
Toxics ; 10(9)2022 Aug 28.
Article En | MEDLINE | ID: mdl-36136467

Benzene, toluene, and xylenes (BTX) commonly co-exist. Exposure to individual components and BTX-rich mixtures can induce hematological effects. However, the hematological effects of long-term exposure to BTX are still unclear, and respective reference levels based on empirical evidence should be developed. We conducted a follow-up study in BTX-exposed petrochemical workers. Long-term exposure levels were quantified by measuring cumulative exposure (CE). Generalized weighted quantile sum (WQS) regression models and Benchmark Dose (BMD) Software were used to evaluate their combined effects and calculate their BMDs, respectively. Many hematologic parameters were significantly decreased at the four-year follow-up (p < 0.05). We found positive associations of CE levels of benzene, toluene, and xylene with the decline in monocyte counts, lymphocyte counts, and hematocrit, respectively (ß > 0.010, Ptrend < 0.05). These associations were stronger in subjects with higher baseline parameters, males, drinkers, or overweight subjects (Pinteraction < 0.05). BTX had positive combined effects on the decline in monocyte counts, red-blood-cell counts, and hemoglobin concentrations (Ptrend for WQS indices < 0.05). The estimated BMDs for CE levels of benzene, toluene, and xylene were 2.138, 1.449, and 2.937 mg/m3 × year, respectively. Our study demonstrated the hematological effects of long-term BTX co-exposure and developed 8h-RELs of about 0.01 ppm based on their hematological effects.

20.
Chemosphere ; 308(Pt 2): 136394, 2022 Dec.
Article En | MEDLINE | ID: mdl-36099984

Humans are constantly exposed to parabens (PBs), triclosan (TCS), benzophenones (BPs), and phthalate esters (PAEs) due to the widespread existence of these chemicals in personal care products (PCPs), and the high frequency of usage for humans. Previous studies indicated each class of the above-mentioned chemicals can exhibit potential adverse effects on humans, in particular DNA oxidative damage. However, the health risk assessment of combined exposures to multiple PCPs is limited, especially the overall dose-effect of mixtures of these chemicals on DNA oxidative damage. In this study, we measured the urinary levels of 6 PBs, TCS, 8 BPs, 15 metabolites of PAEs (mono-PAEs), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) from 299 adults simultaneously. PBs, TCS, BPs, and mono-PAEs were frequently detected in urinary samples with median concentrations of 52.888, 0.737, 1.305, and 141.381 ng/ml, suggesting a broad, low-level exposure among participants. Risk assessments indicated approximately 22% and 15% of participants suffered health risks (Hazard index >1) from exposure to TCS and PAEs. The relationship between 8-OHdG levels and chemical exposure was estimated by Bayesian kernel machine regression (BKMR) models. It indicated an overall positive correlation between the mixture of these chemicals and 8-OHdG, with methylparaben and mono-benzyl phthalate contributing the most to this association. Of note, sex-related differences were observed, in which exposure to PCPs led to higher health risks and more pronounced dose-effect on DNA damage in the female population. Our novel findings reveal the health risks of exposure to low-level PCPs mixtures and further point out the overall dose-response relationship between DNA oxidative damage and PCP mixtures.


Cosmetics , Environmental Pollutants , Phthalic Acids , Triclosan , 8-Hydroxy-2'-Deoxyguanosine , Adult , Bayes Theorem , Benzophenones/toxicity , Benzophenones/urine , Environmental Exposure/analysis , Environmental Pollutants/urine , Esters/toxicity , Female , Humans , Oxidative Stress , Parabens/analysis , Phthalic Acids/metabolism , Triclosan/toxicity
...